this post was submitted on 15 Nov 2023
19 points (100.0% liked)

Explain Like I'm Five

14513 readers
4 users here now

Simplifying Complexity, One Answer at a Time!

Rules

  1. Be respectful and inclusive.
  2. No harassment, hate speech, or trolling.
  3. Engage in constructive discussions.
  4. Share relevant content.
  5. Follow guidelines and moderators' instructions.
  6. Use appropriate language and tone.
  7. Report violations.
  8. Foster a continuous learning environment.

founded 2 years ago
MODERATORS
 

It's been a while since I was taught Chemistry, but I was reading something the other day and I couldn't quite get my head around the concept.

So the periodic table shows elements with their atomic numbers (protons) and atomic weight (protons + neutrons). Isotopes have different numbers of neutrons, like carbon-12 and carbon-13 which I believe would have 6 and 7 neurons respectively.

So why is carbon-12 the 'default' option, shown on the periodic table? Is it to do with which version of carbon is the most common? I don't understand how we decide what makes up the pure version of an element/ it's atomic weight as shown on the periodic table

you are viewing a single comment's thread
view the rest of the comments
[โ€“] OmegaMouse 4 points 1 year ago (1 children)

So it's an average of the different isotopes that can be found? That's interesting, I wonder how they work out that average. Do you have to take samples all over the world?

[โ€“] Transform2942@lemmy.ml 5 points 1 year ago* (last edited 1 year ago)

I did a little research and the answer is pretty interesting!

Originally, chemists assigned hydrogen a mass number of 1, and used that assumption to derive the masses of the other elements. Today we definine "1" as being 1/12 of the weight of Carbon-12 (which is very close to the average weight of hydrogen we use today)

As to the relative frequencies, they can be different at different points on earth, this Chemistry SE answer goes into a lot more detail.

If you have never done "stoichiometry" before it may not be obvious but the periodic table average weights are essential for going from "I have x grams of substance" to "I have x number of atoms/molecules of substance" and from there you can use the equation of your target reaction to precisely predict the outcome of a chemical process. If you were doing very high precision chemistry, the differences in isotopic ratio in your sample vs the standard values could introduce an error but I would guess most of the time it is insignificant.