this post was submitted on 05 Oct 2023
60 points (96.9% liked)

Ask Science

8690 readers
166 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
 

As in, are there some parts of physics that aren't as clear-cut as they usually are? If so, what are they?

you are viewing a single comment's thread
view the rest of the comments
[–] AffineConnection@lemmy.world 4 points 1 year ago* (last edited 1 year ago)

Examples would be Helium-4

The standard model predicts that hydrogen-1 is the only stable nuclide because electroweak instantons allow three baryons (such as nucleons: protons and neutrons) to decay into three antileptons (antineutrinos, positrons, antimuons, and antitauons), which imply the instability of any nuclide with a mass number of at least three; or for two baryons to decay into an antibaryon and three antileptons, which would imply that deuterium could decay into an antiproton and 3 antileptons.

This is very rarely discussed because the nuclides that can only decay through baryon anomalies would be predicted by the standard model to have ludicrously long half lives (to my memory, something roughly around 10^150 years, but I might be wrong).

Hydrogen-1 is stable in the standard model, as it lacks a mechanism for (single) proton decay.