this post was submitted on 15 Oct 2024
54 points (78.1% liked)

Technology

34858 readers
129 users here now

This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.


Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.


Rules:

1: All Lemmy rules apply

2: Do not post low effort posts

3: NEVER post naziped*gore stuff

4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.

5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)

6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist

7: crypto related posts, unless essential, are disallowed

founded 5 years ago
MODERATORS
 

cross-posted from: https://lemmy.zip/post/24515831

The research team, led by Wang Chao from Shanghai University, found that D-Wave’s quantum computers can optimize problem-solving in a way that makes it possible to attack encryption methods such as RSA.

Paper: http://cjc.ict.ac.cn/online/onlinepaper/wc-202458160402.pdf

Follow up to https://lemmy.ca/post/30853830

you are viewing a single comment's thread
view the rest of the comments
[–] utopiah@lemmy.ml 10 points 3 weeks ago

So if you are genuinely worried about this, don't.

First because, as numerous persons already clarified, researchers here are breaking deprecated cryptography.

It's a bit like taking toothpicks and opening a lock while the locks used in your modern car is very different. Yes, it IS actually interesting but the same technique does not apply in practice, only in principle.

Second because IF in principle there IS a path to radically grow in power, there are already modern cryptography techniques which are resistant to scaling the power of quantum computers. Consequently it is NOT just about small the key is, but also HOW that key is made, what are the mathematical foundations on which a key is made, and can be broken.

Anyway for a few years now there has been research, roughly matching the interest in quantum computers, to what is called post-quantum encryption, or quantum resistant encryption. Basically the goal of the research is to find new ways to make keys that are very cheap to generate and verify, literally with something as cheap and non powerful as the chip in your credit card, BUT practically impossible to "crack" for a computer, even a quantum computer, even a powerful one. The result of that on-going research are schemes like Kyber, FALCON, SPHINCS+, etc which answer such requirements. Organizations like NIST in the US verify that the schemes are actually without flaws and the do recommendations.

So... all this to say that a powerful quantum computer is still not something that breaks encryption overall.

If you are worried TODAY, you can even "play" with implementations like https://github.com/open-quantum-safe/oqs-demos and setup a server, e.g Apache, and a client, e.g Chromium, so that they can communicate using such schemes.

Now practically speaking if you are not technically inclined or just want to bother, you can "just" use modern software, e.g Signal, which last year https://signal.org/blog/pqxdh/ announced that they are doing just that on your behalf.

You can finally expect all actors, e.g hosts like Lemmy, browsers like Firefox, that you use daily to access content to gradually both integrate post-quantum encryption but also gradually deprecate older, and thus risky, schemes. In fact if you try to connect today to old hardware via e.g ssh you might find yourself forced to accept older encryption. This very action is interesting because it does show that over the years encryption changes, old schemes get deprecated and replace.

TL;DR: cool, not worried though even with a properly powerful quantum computer because post-quantum encryption is being rolled out already.