this post was submitted on 02 Jul 2024
58 points (100.0% liked)

chapotraphouse

13447 readers
1124 users here now

Banned? DM Wmill to appeal.

No anti-nautilism posts. See: Eco-fascism Primer

Vaush posts go in the_dunk_tank

Dunk posts in general go in the_dunk_tank, not here

Don't post low-hanging fruit here after it gets removed from the_dunk_tank

founded 3 years ago
MODERATORS
 

This little guy craves the light of knowledge and wants to know why 0.999... = 1. He wants rigour, but he does accept proofs starting with any sort of premise.

Enlighten him.

you are viewing a single comment's thread
view the rest of the comments
[–] Tomorrow_Farewell@hexbear.net 2 points 2 months ago

Alright, so, the other proof that I promised:

If we define 0.999... as the sum of the series 9/10+9/100+9/1000+..., then for every neighbourhood U(1) it is true that there exists a metric ball B_N = B(1, 1/10^N), where N is natural, such that B_N is a subset of U(1).

For all natural n > N it is true that d(sum(9/10^k) for k from 1 to n, 1) = |1 - sum(9/10^k) for k from 1 to n| = |1/10^n| = 1/10^n < 1/10^N, meaning that for all natural n > N it is true that sum(9/10^k) for k from 1 to n is in B_N, meaning that it is also in U(1).

However, sum(9/10^k) for k from 1 to n is the nth partial sum of the series 9/10+9/100+9/1000+..., which, together with the fact that every such sum is in U(1) for n > N, means that 1 is the limit of the sequence of the partial sums of the series 9/10+9/100+9/1000+..., meaning that 1 is the sum of that series. That means that 0.999... is 1 by definition.